
Improving Image Search Relevance Through Context
Analysis and Deduplication

Johnny Bui (172A)
Mentors: Randal Moss and Garrett Johnston

Jet Propulsion Laboratory
La Cañada Flintridge, California, USA

Figure 1: The detail page of the new JSearch showcases contextual information extracted from the image’s source webpage.

ABSTRACT
In order to facilitate effective internal and external commu-
nication, many JPL employees and affiliates rely on lab-wide
image search to return relevant images and graphics to com-
plete their work. However, improving the relevance of image
search results is challenging because most pictures do not
have captions. Here we describe a performant library, Na-
tive Generation of Indexable coNtext for Images (NaGINI),
that is capable of generating image tags using contextual
cues from the webpage which the image is embedded. Nat-
ural language processing (NLP) techniques applied to the
text from a source webpage summarize long articles and
generate a list of topic keywords which are given increased
importance in the search engine. We also implement image
deduplication functionality within NaGINI through the use
of an image-focused Locality-Sensitive Hash (LSH) function
and an innovative database structure that is optimized for
queries involving binary hamming distance. Future work is
required to improve the output of the NLP techniques and

filter out noise resulting from webpages that do not have
significant textual elements.

KEYWORDS
image search, deduplication, contextual tagging, natural lan-
guage processing, hamming distance

1 INTRODUCTION
In the age of virtually-instantaneous search powered by tech
giants like Google and Microsoft, users are increasingly re-
liant on search engines that can quickly respond to search
queries with relevant results. This is no different at the Jet
Propulsion Laboratory, where JPL-ers constantly rely on
search to quickly locate details about other projects and
people to propel their own research forward. To meet their
needs, the Office of the Chief Information Officer (OCIO) at
JPL established the 172A - Collaborative Engineering And In-
formation Capture group to develop andmaintain an internal
search engine called JSearch.

Johnny Bui (172A)

Since 2014, JSearch has been deployed to JPL-ers through
JSpace, the homepage for JPL lab members connected to the
internal lab network. Users begin a query by typing into
the search bar found at the top of the page. Autocomplete
suggestions automatically appear in a drop-down and the
search results that populate the page are updated with each
keystroke. Users can then choose the type of results they
wish to view: webpages, documents, images, videos, or peo-
ple. In the month of July 2019, over 3,000 unique users used
JSearch out of the approximately 6,000 full-time employees
[1]. In this report, we will focus on the current functionality
of the image search engine and how it can be improved, both
in regards to result relevance and user experience.

2 BACKGROUND
There are many pieces of software that the JSearch team rely
on every day to provide a reliable and performant search
experience to users across the Lab. Improving image search
will require that the solution be concurrently interoperable
with these frameworks, and optimally be integrated directly
into the pre-existing search architecture.

Software and Architecture
JSearch image search, alongside web and document search-
ing, is powered by a cluster of servers running the open-
source search and analytics engine Elasticsearch. Elastic-
search stores schema-free JSON documents (which can be
thought of as dictionaries with key-value pairs) that repre-
sent searchable content. Fields are analyzed to enable specific
searching behavior, and the search engine returns a list of
documents when a client performs a query. Interfacing with
Elasticsearch is performed either through HTTP calls or us-
ing high-level client libraries for programming languages
such as Python.
In order to populate the Elasticsearch cluster with web

pages, documents, and images, we rely on a JPL-specific im-
plementation of Scrapy, an open-source Python web crawl-
ing framework. Scrapy is able to methodically index the web
resources available on the JPL network by following links
embedded on each page, similar to how a searching algo-
rithm traverses a graph. Every time it encounters a new
resource, it sends the item through a pipeline which extracts
data and performs analysis before indexing a document in
Elasticsearch.

In order to improve performance and uptime while reduc-
ing operational complexity, software such as Elasticsearch
and Scrapy is deployed to clusters and is managed by Kuber-
netes, a container-orchestration system that allows for simple
deployment, scaling, and management of horizontally-scaled
applications across a cluster of server nodes.

Current Process
Currently, image indexing and searching proceeds through
the following process:

(1) Scrapy crawls JPL websites for webpages and other
resources by recursively following links.

(2) When a link to an image is found, it is indexed into
Elasticsearch with two fields: the URL and link text to
that image (see Listing 1).

(3) When a user enters a query into JSearch and filters for
images, Elasticsearch will query the search index for
images that have that search query in either the URL
string or the link text.

(4) Documents that have the query text will be shown
to the client sorted based on two metrics: Term Fre-
quency and Inverse Document Frequency (TF-IDF).
Results that have the query term multiple times are
ranked higher, but this ranking boost is offset based on
the total number of documents that contain the query
term.

Limitations
There are multiple severe limitations to the current process
by which images are discovered and indexed. These design
flaws result in many images not being indexed and reduce
the relevance of search results.

First, only images that are linked through an HTML <a>
tag are indexed by Scrapy. Displaying an image to a visitor
only requires that the image be embedded using an
tag, so many images that are embedded in a page that are
never added to Elasticsearch.
In addition, images that are linked are only saved with

their URL and corresponding link text. Take a look at an
example snippet of HTML:

Listing 1: The link text is "here".
1 <p>

2 To view the image , click

3 here.

4 </p>

In this case, the image mars.jpgwill only appear in search
results if the user searches for "assets", "mars", or "here". This
is incredibly limiting, especially if the website designer chose
to give the image a less helpful name, like planet4.jpg. This
isn’t purely theoretical however. In Figure 2, notice how the
user does not get any results when the query "robot" is given
to the image search engine. There are in fact images of robots
in the search cluster, but none of them have the word "robot"
in their URL or link text.

Improving Image Search Relevance Through Context Analysis and Deduplication

Figure 2: No results appear when a user searches for "robot"
images using JSearch.

3 DESIGN PRINCIPLES
In order to develop a solution that can address the limitations
of the current system, we must first discuss the design prin-
ciples that are important to consider during implementation.
The main goal of our solution is to improve the accuracy of
image search results, specifically by increasing the overall
relevance of the images returned. While relevant results are
important, we must also consider the performance impli-
cations of our solution because increased query times are
detrimental to user experience. And finally, our solutionmust
be able to easily integrate with other pre-existing compo-
nents of the search architecture to prevent the need to re-tool
the current process.

Accuracy
In the context of image search, accuracy is maximized when
the amount of relevant results returned is maximized and the
amount of irrelevant results is minimized. Users of the image
search engine should be shown as many images as possible
that match the query, but if a significant amount of results do
not match the query, the user’s experience decreases dramati-
cally since they have to sift through the results manually. In a
perfect world, there would be no irrelevant results. However,
we accept a small tradeoff between increasing the number
of irrelevant results in exchange for returning more relevant
results.

Performance
There are two bottlenecks in the image search process where
performance must be considered: at crawl-time and at search-
time. When the web crawler Scrapy encounters an image,
processing must take place in order to increase the amount of
indexed content saved in the Elasticsearch cluster. Although
crawling performance is not directly-connected to the end
user experience, excessive processing time would result in
a decreased crawling throughput, resulting in outdated and
possibly missing images.

Performance is far more important at search-time, when
users enter a query and wait for the server to respond. To-
day, most users expect sub-second response time, with users
navigating away or reloading after a few seconds of non-
responsiveness.

When designing our solution, we must primarily focus on
preventing large increases to query times, while keeping in
mind that crawling time must not be excessive.

Interoperability
JSearch has built up its infrastructure since 2014, and as
such, many tools and technologies have already been decided
upon. Our solution should be able to operate simultaneously
alongside existing search infrastructure without breaking
any functionality. Preferably, we aim to integrate our solution
directly in the existing toolchain tominimize implementation
friction.

4 NAGINI
During the indexing of an image, we must augment the
stored document with textual descriptors so that Elastic-
search can retrieve relevant image results in response to a
text query. Elasticsearch is a text search engine, so improv-
ing image search relevance is synonymous with improving
the relevance of supplemental text in an Elasticsearch image
document. But where can we find relevant text about an
image?

Finding Relevant Text
There are two distinct data sources of an image embed-
ded/linked in a webpage: the image data and the contextual
information found in the webpage where the image is refer-
enced. While image data can be analyzed using techniques
like machine learning to identify the objects within an image,
it relies on having access to a large accurate training data
set and a significant amount of computing power. While the
second requirement can be arranged, it remains a challenge
to obtain a pre-tagged data set of images that is JPL-specific.

Because many off-the-shelf image captioning models such
as Apache Tika ImageCaption are trained using a consumer
data set, they are woefully inadequate at identifying objects
that are more common at JPL (see Figure 3). Beyond that,
image data is also useful for extracting text from an image
that contains rasterized text (such as graphs) through the
use of optical character recognition (OCR).
With image data being a dead end for relevant text ex-

traction (besides OCR), we turn to the other source of data:
the context webpage. Often, images are embedded into web-
pages that pertain to the topic of the image. For example,
pictures embedded on a webpage about Jupiter are likely to
be of Jupiter. But how do we leverage this new data source?

Johnny Bui (172A)

Figure 3: Apache Tika incorrectly captions this image of the
Mars Curiosity rover as "a man riding a motorcycle on top
of a sandy beach." Photo courtesy JPL/NASA.

Utilizing Natural Language Processing
Our new goal is to extract the important ideas out of a web-
page in order to make assumptions about the contents of an
image. The solution to our problem is also an active area of
research: Natural Language Processing (NLP).
We first must be able to extract the main text from an

HTML webpage in order to reduce the amount of noise from
irrelevant elements. To accomplish this, we can use an HTML
parser such as beautifulsoup4. We must then determine
important keywords of the extracted text using NLP. This is
done by removing stop words (words that add no meaning
to a sentence), analyzing sentence structure, and inferring
word importance from frequency and position.

Putting It All Together
To combine all of the ideas into a component that abstracts
away complexity, we introduce NaGINI, a backronym for Na-
tive Generation of Indexable coNtext for Images. There are two
main components of NaGINI : NaginiContext for context
analysis and NaginiImage for image analysis.

NaginiContext is a thin wrapper around newspaper 1, an
open-source parsing and NLP library. It checks the validity
of context pages based on the URL, downloads the page’s
HTML, parses the page for the page title and most promi-
nent image, and performs NLP in order to generate a list of
keywords and a shortened summary of the webpage.

NaginiImage is a class that performs validation on an im-
age URL before downloading and processing it with Tesseract
OCR2. It also performs functions relating to image dedupli-
cation explained in the next section.

1https://github.com/codelucas/newspaper
2https://github.com/tesseract-ocr/tesseract

5 IMAGE DEDUPLICATION
During the development and testing of NaGINI, it became
obvious that image duplication was a significant problem on
many JPL websites. Image duplication can be seen when the
"same" image is served over different URLs. However, while
some images were bit-wise identical, many other duplicates
were "near-identical" images that were simply resized. This
means that while the images are visually-identical, the binary
data of each image is actually very different.

Figure 4: Four near-identical versions of the same image
were found onPhotojournal. Each versionwas either resized
or had additional annotations.

Challenges to Traditional Deduplication Methods
A naïve-approach to detecting duplicate images is perform-
ing pairwise comparison of each image’s binary data. How-
ever, while binary comparison would be capable of detecting
images that are renamed, it is computationally-expensive to
perform so many comparisons on an unbounded-size input.
To solve this, we apply a hash function to each image’s

binary data and compare each hash. A hash function maps
an arbitrary-size input to a fixed-size output. One example of
such a hash algorithm is the Secure Hash Algorithm (SHA), a
widely-used set of cryptographic hash functions. One variant
of this family, SHA-256, could map each image into a 256-bit
binary string.
However, if we want to detect visually-identical images

that are resized or in a different file format, hash functions
such as SHA-256 fail us because the hash output will almost-
certainly never match (or even be close) if the hash input
is different. This behavior is one property of cryptographic
hash functions known as collision-resistance. While this
property is important in many use cases of hashing, it is not
useful for finding near-duplicate images.
We now know that we need a different method of hash-

ing that is capable of generating fixed-size outputs that are
similar if the variable-size input is similar.

https://github.com/codelucas/newspaper
https://github.com/tesseract-ocr/tesseract

Improving Image Search Relevance Through Context Analysis and Deduplication

Locality-Sensitive Hashing
Since we have determined that cryptographic hashes don’t fit
the bill, it is clear that the problem must be approached using
a different method. Locality-sensitive hashing (LSH) is an al-
gorithmic technique where similar input data is mapped into
a similar output hash with high probability. Early research
of such an approach was published by Sadowski, Caitlin,
and Levin in their article introducing simhash, a document-
focused hash function where "similar files should map to
very similar, or even the same, hash key" [3].

Perceptual Hashing
Given what we know so far, we now understand the require-
ments necessary to build an image deduplication system
capable of efficiently and effectively detecting near-identical
images. The remaining implementation details are described
by Zauner, who implements a C++ library that integrates
multiple steps in order to create such an LSH specific for the
image domain [4].

In short, Zauner’s perceptual hash function performs the
following steps:
(1) Extract the pixel data from the image to normalize

any differences in input file format and save into a
2-dimensional array.

(2) Convert the image color space to grayscale to reduce
input data size while preserving most semantic data.

(3) Apply an averaging (blur) filter to the image to re-
duce high-frequency patterns that are unnecessary for
image comparison.

(4) Resize the image to a 32-by-32 pixel square to eliminate
differences in aspect ratio (stretching or compression
along an axis) from affecting image comparison.

(5) Perform a Type-II discrete cosine transform and isolate
the top-left 8-by-8 set of coefficients that represent the
most low-frequency patterns of the image.

(6) String the matrix of coefficients together into a one-
dimensional array, determine the medianm of the co-
efficients, and map the coefficients xi to binary using
the following function:

f (xi) =

{
0 xi < m

1 xi ≥ m
(1)

(7) The resulting binary array is the 64-bit perceptual hash
of the image.

Defining Duplicates
Once the image has been hashed into a 64-bit binary string,
the final piece of the deduplication puzzle remains: using the
computed hash to locate similar images in a collection. In the
remainder of this report, we define similar images as images
that are visually-identical, but do not necessarily have the

same binary data. It is possible to accomplish this in linear
time by comparing the query image’s hash with the hashes
of every other picture. However, knowing that our database
will store tens of thousands of images, can we improve the
scalability of our image search by finding a sub-linear search
algorithm?

To quantify similarity based on our perceptual hash, we de-
fine the hamming distance of the two hashes to be inversely-
proportional to the probability that the two images are near-
duplicates. Hamming distance is the number of bit positions
that two equal-length binary strings differ. In terms of bit
operations, the hamming distance d of two binary strings A
and B with equal length l is given by

d(A,B) =
i<l∑
i=0

Ai ⊕ Bi (2)

where Ai is the ith bit of A.
More formally, given binary perceptual hashes A and

B from two images, the probability P that they are near-
identical is given by

P(A,B) = 1 −
d(A,B)

64
(3)

To ensure that we do not incorrectly misclassify images as
duplicates (since duplicates would be removed from search
results), we attempt to optimize for reducing false positives
at the cost of false negatives. Based on preliminary testing,
resizing and small annotations do not change the perceptual
hash inmore than three positions. Therefore, when searching
for duplicates of a given image with hash h, another image
with hash h′ is considered near-identical if d(h,h′) ≤ 3.

The astute reader will notice that the image duplicate
searching process takes linear time for each query image
due to the fixed-length bitwise comparison to each hash in
the collection. While the performance of this process is not
critical to user experience since it is performed at crawl-time,
indexing time will suffer greatly as we load the image data-
base with tens of thousands of images. The road to sub-linear
performance isn’t straightforward, since throwing a hash
table at the problem will still result in poor performance due
to the number of lookups required. For a hamming distance
of up to three,

(64
1
)
+
(64
2
)
+
(64
3
)
= 43744 lookups are required

for a given query hash. This is due to the number of possible
positions that bits can be flipped from the 64-bit hash.

Achieving Sub-linear Hamming Distance Search
We have introduced two different methods of searching a
collection for hashes that have a hamming distance of three
or less: linear-time search using bitwise operations and using
a hash-table to lookup all possible hashes. In the former, per-
formance is limited by the comparison on the linear number
of hashes, and in the latter, the amount of queries is constant

Johnny Bui (172A)

but has a significant constant factor that is unsuitable for
our use case.
In an article by Manku, Jain, and Sarma, they lay out

the framework for solving this problem by chunking the
binary data [2]. The intuition behind this approach is to both
minimize the amount of comparisons and the amount of
queries by splitting the binary string into chunks that are a
subset of the original.
An example would best illuminate the ingenuity of this

approach. Say that we split our 64-bit binary string into five
chunks of lengths 13, 13, 13, 13, and 12. If we want to find all
binary strings in a collection that are at most three hamming
distance away, two of the five chunks must be identical.
While we don’t know which two chunks would be identical,
we can query the collection for all

(5
2
)
= 10 combinations.

This can be done by creating 10 different hash tables that
correspond to each combination of matching chunks and
map the 25 or 26-bits of data to a list of all documents with
those matching chunks.
While this increases the storage size by a factor of up to

ten, it greatly narrows down the candidate hashes, since any
hash that does not have at least two identical chunks must
be over three hamming distance away.

Note that while all of the eliminated hashes had a hamming
distance greater than three, it is not necessarily true that all
remaining hashes have a hamming distance of less than three.
If, for example, the first ten bits of a hash were different, only
one chunk would be different and four chunks would be
identical. Therefore, we must proceed with linear bit-wise
comparison for all candidate hashes in order to filter out
candidates that have a hamming distance of more than three
from the query.
Although we described the process in detail above, we

purposefully omit the explanation for how this technique
greatly improves the performance of binary hamming dis-
tance search. Further theory can be found in [2], which is
the source of this implementation. An evaluation of the real-
world performance is provided in section 7.

Content-Based Information Retrieval
By using the perceptual image hash algorithm to reduce the
dimensionality of the query image data, we are able to rapidly
locate near-identical images from a database with high accu-
racy. Besides deduplication, another use of this functionality
is to implement a rudimentary reverse-image search feature
where a user uploads an image and the search engine re-
turns all recorded instances where the image appears on the
network.
Implementation of this feature was straightforward be-

cause all of the groundwork has already been laid out in
previous sections, most importantly the hashing of images
in the database. The impressive performance of the sub-linear

hamming distance search allows us to query a hash from
database of millions of documents in less than half a second
(full performance data is found in section 7).

Implementation
The image deduplication function is implemented as a class
functionwithinNaginiImage by using the imagehash Python
library available through PyPi. Images are opened using
Pillow, hashed into a 64-bit hex string, and split into 13, 13,
13, 13, and 12-bit hex chunks, respectively. They are then
stored in Elasticsearch with the following schema:

Listing 2: Snippet of Elasticsearch schema
1 {

2 ...

3 image_hash: "c73b3c3b4949494b",

4 image_hash0: "18e7",

5 image_hash1: "cf0",

6 image_hash2: "1da4",

7 image_hash3: "1494",

8 image_hash4: "94b"

9 }

Notice that we store both the full image hash and the
image hash chunks in hexadecimal form. This is to both
preserve leading zeros in the full hash while also minimizing
storage space by avoiding the need to store a 64-character
string with only zeroes and ones.
With Elasticsearch, we do not have to query all possible

combinations of two chunks that could be identical. If you
recall, this was necessary because we know that at most
three chunks can be be different but not which three chunks.
Luckily, Elasticsearch’s query language allows us to search
for documents where two out of five conditions are true using
the minimum_should_match property on a bool compound
query. Once all candidates from this query are returned, we
use the image_hash field to determine the hamming distance
between the query and the candidates to filter out hashes
that exceed the hamming distance threshold of 3.

If there is a match, we must determine whether to mark an
image as a parent or a duplicate. Parents are considered the
"original" image, and all near-identical images to the parent
are considered duplicates. Using a ranking function, we mark
the parent as the image that has the highest resolution (as
defined by the total number of pixels). If there is a tie, we
arbitrarily break the tie by marking the most recent image
indexed as the parent. All duplicates are marked with a flag
and an additional field that specifies the URL of the parent
to that image to allow for duplicate filtering at search-time.

With this implementation, search results will hide all im-
ages that are marked as duplicates by default. In addition,

Improving Image Search Relevance Through Context Analysis and Deduplication

each parent will be able to query the database for its dupli-
cates if an alternate size is requested from the user.

6 USER INTERFACE
With tagging and deduplication completed, the final weeks
of the project were focused onto the development of the
user interface. The current user interface is not able to take
advantage of the new fields that have been generated by
NaGINI, hide duplicates, or hook into the reverse image
search functionality.

To address these issues and also perform the first overhaul
of the user interface since 2014, we decided to begin devel-
opment on JSearch 2.0. By starting fresh, we are able to
implement JSearch to best take advantage of new function-
ality and give search a modern look.

The new search frontend is built on React 16.8 and uses
components from the material-ui 4.2 library. Substantial
changes between the old and new interface include:

• A new, larger search bar that includes a button for
reverse image search

• Results being displayed as cards to increase the amount
of information users receive at a glance

• A details page for each result that gives users more
information about the image and links to both the
image URL and the source page.

7 EVALUATION
While designing and implementing NaGINI, image dedupli-
cation, and the user interface, optimizations and tradeoffs
were made by prioritizing the design principles described
in section 3. In this section, we discuss how accuracy, per-
formance, and interoperability informed the function and
design of image search.

Contextual Tagging
NaGINI ’s primary responsibility is to serve as a layer of ab-
straction around disparate libraries that fetch web resources,
validate responses, and analyze webpages & images for rel-
evant text to index. In general, our evaluation of NaGINI ’s
accuracy is more lenient on having a high rate of false posi-
tives (extracted tags that are irrelevant) rather than having
a high rate of false negatives (tags that should be extracted
but are not). The intuition behind this evaluation decision is
because it is a superior search experience to have to scroll
through some irrelevant images before finding a relevant
image rather than the relevant images not appearing at all.

If a user requests images of a "robot", the old image search
would not return any results (refer back to Figure 2). How-
ever, as seen in Figure 5, which implements the new image
search, images that show robots are now returned to the

Figure 5: This screenshot shows the many results that are
returned by the new image search platform in response to
the query "robot".

user, even if the image URL does not contain that word. Im-
plementing NaGINI has improved the relevance of image
search results, and thus accuracy has improved.

Figure 6: This graph visually represents the amount of time
taken by each step in NaGINI. Each bar represents an image
and context page that was fetched and analyzed.

We next consider the performance of NaGINI during the
indexing of new images. While it is not incredibly important
to optimize contextual tagging because it occurs at crawl-
time, we would preferrably like to minimize the amount
of crawling instances needed to crawl the network by in-
creasing the crawling throughput. As shown in Figure 6, the
additional time that is required for fetching and analysis is at
most a few seconds, which is in line with the current amount
of time required to crawl a webpage using Scrapy. While the
performance of NaGINI is nothing to admire, it functions
well with an acceptable speed.

In order to implement NaGINI into the current search
indexing pipeline, it had to be integrated into the JPL web

Johnny Bui (172A)

crawler Scrapy. Because NaGINI is packaged as a library,
integration was simple and only required additional imports
and function calls in order to generate the contextual in-
formation. Scrapy is also able to pass in the HTML content
of the context webpage in order to eliminate a redundant
network transfer, improving performance considerably. Be-
cause of this, it is clear that NaGINI is designed to be highly
interoperable with Scrapy.

Image Deduplication
The image deduplication functionality described in this re-
port was implemented for a test crawl of the website https:
//photojournal.jpl.nasa.gov. On this website, duplicate im-
ages are prevalent because of the usage of thumbnails and
annotated images. During the test run, over 6,000 out of the
19,000 images indexed were marked as duplicates, and after
manual checking, it is clear that the deduplication is working
as intended.
The deduplication performance is extremely impressive

because of the sub-linear time algorithm used to query the
database for hashes within a certain hamming distance. Be-
cause we decided to store image hashes alongside images in
Elasticsearch, we are able to utilize the pre-existing search
infrastructure and prevent data fragmentation. As shown
in Figure 7, the time to add a new document to the data-
base is negligable compared to NaGINI analysis. In Figure 8,
querying a database of 1 million documents for hashes that
are at most three hamming distance away from the query
is achieved in less than half a second per query. This per-
formance is exceptional and meets the needs of JSearch for
both crawl-time deduplication and search-time reverse im-
age search.

Because our deduplication process does not require addi-
tional infrastructure and minimal changes to the code base,
interoperability with existing components is outstanding.
Altering Scrapy to check for duplicates is as simple as adding
an additional pipeline step within the crawler. This step will
set a flag in the document if the current image is a duplicate
to an image already in the database.
Although reverse image search relies on a Python proxy

server in order to accept image files and return the perceptual
hash, this is not required for basic image search functionality,
and is relatively easy to write and maintain.

User Interface
The new JSearch user interface is intended to replace the
current search webpage. It relies on an HTTP proxy to me-
diate communication between end clients and the Elastic-
search cluster. For the purposes of prototyping, a simple
proxy server has been developed using Flask. However, for
production environments, a rewrite of the proxy server is rec-
ommended to optimize performance, since the Flask server

Figure 7: These graphs depict the time needed to generate
and insert image hashes into an Elasticsearch cluster using
a diverse sample of JPL images.

will likely become the bottleneck during periods of high
search volume.
Client browser performance is heavily impacted when

more than 100 image results are loaded at the same time. It
is reasonable to conclude that this is because the images that
make up the search results are original size, and not thumb-
nails. This results in high compute, memory, and network
needs during loading and scrolling. Some recommendations
on how to fix this are discussed in section 9.

8 STATUS
As of the publication of this report, the tagging tool NaGINI
and the image deduplication engine have been implemented
into the pre-existing search indexing pipeline and published
on the JPL source control system. These two elements are
ready for deployment to production, and they are backwards

https://photojournal.jpl.nasa.gov
https://photojournal.jpl.nasa.gov

Improving Image Search Relevance Through Context Analysis and Deduplication

Figure 8: This graph shows the time it takes to query a data-
basewith 1million documents for all hashes that are atmost
three hamming distance away.

compatible with the current user interface. The new user
interface requires additional development to improve its
performance and feature set, but is completely functional
and serves as a minimally-viable product.

9 FUTUREWORK
While great strides have been made in improving image
search, future work is required to implement additional fea-
tures that build on the work described in this report. For
NaGINI, the output of the natural language processing (NLP)
library should be able to prioritize certain keywords (such
as proper nouns) that improve the relevance of search. In
addition, context pages should be scanned to determine if
significant textual elements do not exist to prevent the NLP
library from outputting useless gibberish. Photojournal cata-
log pages exhibit this problem.
While our current image deduplication process is able to

detect resized images, it is not as sensitive to near-duplicates
that have small crop differences. This can be solved by mi-
grating to a different perceptual hashing algorithm or in-
creasing the hamming distance threshold. Reverse image
search should be able to return images that depict the same
object, but are not necessarily near-duplicates. This image
similarity platform is currently being developed for JSearch
by Sohini Kar, and will require integration with the new
JSearch interface.
Before sending the new JSearch interface to production,

a performant and production-ready proxy service needs to
be developed and deployed in order to handle demanding
production traffic. In addition, features such as sorting and
filtering have been rigged into the design but not integrated

into the logical components. Lastly, other categories of search
such as webpages and documents must be implemented into
the search page for consistency.

10 CONCLUSION
Today, many problems with the JSearch image search plat-
form prevent users from quickly retrieving relevant images,
resulting in an unsatisfactory user experience. In this report,
several improvements have been identified and implemented
in preparation for JSearch 2.0, which will implement con-
textual image tagging, image deduplication, and a modern
user interface that takes advantage of the expanded feature
set.

Contextual image tagging is enabled through the use of the
NaGINI library, which is integrated closely with Scrapy to tag
images based on NLP analysis on the source page which an
image is tagged from. Image deduplication relies on a locality-
sensitive hashing function that quantifies image similarity
based on hamming distance. This hamming distance search
is possible using Elasticsearch because of a filtering technique
called binary chunking. And lastly, all of these features are
visible to end users through a sleek and modern interface
built using React.

ACKNOWLEDGMENTS
Without certain people, the findings of this report would
have never seen the light of day. Special thanks to Randy
Moss for entrusting me with a project that is both awesome
and has a substantial impact on JPL. Garrett Johnston was
a fantastic guide in helping me aim the trajectory of my
project so that I make the most out of my internship. Crispus
Mwaura gave great insight into the best way to structure
my NaGINI code for testability. Kevin Hwang was a great
resource to bounce some of my outlandish ideas off of. And
of course, the other Woodbury interns, without whom this
report would have been done 2 week earlier.

REFERENCES
[1] National Aeronautics and Space Administration. 2019. Jet Propulsion

Laboratory 2018 Annual Report. (April 2019). https://www.jpl.nasa.
gov/report/2018.pdf

[2] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. 2007. De-
tecting near-duplicates for web crawling. In Proceedings of the 16th
international conference on World Wide Web. ACM, 141–150.

[3] Caitlin Sadowski and Greg Levin. 2007. Simhash: Hash-based similarity
detection. Technical report, Google (2007).

[4] Christoph Zauner. 2010. Implementation and benchmarking of percep-
tual image hash functions. (2010).

https://www.jpl.nasa.gov/report/2018.pdf
https://www.jpl.nasa.gov/report/2018.pdf

	Abstract
	1 Introduction
	2 Background
	Software and Architecture
	Current Process
	Limitations

	3 Design Principles
	Accuracy
	Performance
	Interoperability

	4 NaGINI
	Finding Relevant Text
	Utilizing Natural Language Processing
	Putting It All Together

	5 Image Deduplication
	Challenges to Traditional Deduplication Methods
	Locality-Sensitive Hashing
	Perceptual Hashing
	Defining Duplicates
	Achieving Sub-linear Hamming Distance Search
	Content-Based Information Retrieval
	Implementation

	6 User Interface
	7 Evaluation
	Contextual Tagging
	Image Deduplication
	User Interface

	8 Status
	9 Future Work
	10 Conclusion
	Acknowledgments
	References

